Generalized linear models

April 7, 2011

Generalized linear models encompass a large class of models which can be applied in sit-
uations where the response variable is not normally distributed as assumed in linear models
(including multiple regression, analysis of variance, and analysis of covariance).

1 Binomial response

Suppose that the response variable is binomially distribud, that is, each observation Y is based
on say, n independent Bernoulli trials, and the probability of a particular event has probability p
for all trials on which observation Y is based. We want to model how the probability p depends
on explanatory variables of interesting, either numerical variables or factors.

Rather than working with the probability p,

0<p<l, (1)

we may work with the odds of the event p/(1 — p). For example, if p = 0.9 the corresponding
odds is 9, a probability p = 1/2 gives an odds of 1, and if p = 0.1 the odds is 0.11. In
general, the odds of an event will be a non-negative quantity with no upper bound, that is,
0 <p/(1—p) < +oo. Taking the log of the odds Inp/(1 — p) known as the logit transformed
probability logit p, we thus get a quantity which can take any positive or negative real value,

— oo < logitp < 400 (2)
We then assume that
logitp = Bo + B1x1 + -+ - + Bray (3)
7

where the right hands side 7 is the so called linear predictor of the model. Solving for p we see

that this ensures that
B 1 B 1 4
P=7 +e 14 e (BotBrzit+Brz) )

always takes a meaningful value between 0 and 1 without any additional constraints on the
parameters.

In the same way as for linear models, the linear predictor may involve factors encoded using
dummy variables.

To make the notation less cumbersome, it should be noted that we have omitted indices 4
indicating different observations on Y, p, n and the explanatory variables x1,zo, ...,z above.

2 Deviance

Suppose that we have data of the form given in Table[I] The likelihood function for a generalized
linear model for these data assuming that Y; is binomially distributed with parameters n; and



Yi Ny Ty
5 10 -.2
2 5 -1
7 20 O

9 10 .1
8 12 .2

Table 1: Example data set

p; where logit p; = By + B12; becomes

L(Bo, B1) = ﬁ( ) —pi)" Y
; _ - (5)

1 Yi 1 n;—Y;

that is, a function of the observed data and the unknown parameters 8y and (1.

In gereral, the parameters of a generalized linear model are estimated by maximising the like-
lihood function (using a numerical method known as iterated reweighted least squares, IRLS).
As we add more explantory variables to a model, the observed maximum likelihood will al-
ways increase until the number of parameters p (regression coefficients) equals the number of
observations n.

Based on the observed maximum log likelihood of a fitted model we define the deviance D
as

D =2(InLgy —InL) (6)

where In L is the maximum log likelihood of the fitted model and In L, is the maximum log
likelihood of the so called full model, that is, a model having as many paramters p as there are
observations n. The deviance measures how well a given model fits the data and plays a role
similar to the residual sum of squares of a linear model.

2.1 Testing goodness-of-fit

In contrast to linear models in which the response is normal with an uknown variance o which
must be estimated from the data, the variance of a binomially distributed response variable is
given, once the mean is specified. This makes it possible to assess the goodness-of-fit of a given
model.

If a given model Hy fitted to the data is true, it follows that the deviance D is approximately
chi-square distributed with n — p degrees of freedom. If the observed deviance is sufficiently
large we may reject the this null hypothesis and conclude that the model does not fit the data.

Consider the following example for Dalgaard, p. 232.

no.yes <- c("No","Yes")
smoking <- gl(2,1,8,no0.yes)
obesity <- gl(2,2,8,no0.yes)
snoring <- gl(2,4,8,no0.yes)
n.tot <- ¢(60,17,8,2,187,85,51,23)
n.hyp <- ¢(5,2,1,0,35,13,15,8)
data.frame(smoking,obesity,snoring,n.tot,n.hyp)
smoking obesity snoring n.tot n.hyp
No No No 60 5
Yes No No 17 2
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3 No Yes No 8 1
4 Yes Yes No 2

5 No No Yes 187 35
6 Yes No Yes 85 13
7 No Yes Yes 51 15
8 Yes Yes Yes 23 8

> prop <- n.hyp/n.tot
> hyp.mod <- glm(prop ~ smoking + obesity + snoring, fam=binomial(), weight=n.tot)
> summary (hyp.mod)

Call:
glm(formula
weights

prop ~ smoking + obesity + snoring, family = binomial(),
n.tot)

Deviance Residuals:
1 2 3 4 5 6 7 8
-0.04344 0.54145 -0.25476 -0.80051 0.19759 -0.46602 -0.21262 0.56231

Coefficients:

Estimate Std. Error z value Pr(>|z])
(Intercept) -2.37766 .38018 -6.254 4e-10 *%*%*
smokingYes -0.06777 .27812 -0.244  0.8075
obesityYes 0.69531 .28509 2.439 0.0147 *
snoringYes  0.87194 .39757  2.193  0.0283 *

Signif. codes: 0O “*%x’ 0.001 ‘**’ 0.01 ‘x> 0.05 ¢.” 0.1 ¢ ’ 1

0
0
0
0

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 14.1259 on 7 degrees of freedom
Residual deviance: 1.6184 on 4 degrees of freedom
AIC: 34.537

Number of Fisher Scoring iterations: 4

The deviance D of this model (the “Residual deviance”) is 1.61 with n —p = 8 —4 = 4 degrees
of freedom. In this case the observed deviance is well below it’s expected value of 4 under Hy
as well as the upper 0.05-quantile of the chi-square distribution (the critical value)

> qchisq(0.05,df=4,lower.tail=F)
[1] 9.487729

so in this case we can not reject the null hypothesis, that is, we have no evidence that the fitted
model is wrong. The p-value for the test of goodness-of-fit becomes

> pchisq(1.61,df=4,lower.tail=F)
[1] 0.8069937

2.2 Tests between alternative models

In addition to testing the goodness-of-fit of any given model, the deviance is used in tests
between different nested alternatives. Just like the residual sum of squares, the deviance always
decreases as we add more terms to a model. Suppose the H; is an extension of some model Hy
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Figure 1: Relationship between the probability p of the modelled event and the linear predictor
7 for the logit (solid line), probit (dashed line) and cloglog (dotted line) choice of link function.

obtained by adding an extra explanatory variable and let p; and pg be the number of parameters
estimated under H; and Hy. Then the change in deviance

Dy — Dy (7)

is approximately chi-square with p; — po degrees of freedom under Hy. If the observed change
in deviance is sufficiently large we reject Hy in favour of Hi.
Tests of this kind can be obtained as follows

> dropl(hyp.mod,test="Chisq")
Single term deletions

Model:
prop ~ smoking + obesity + snoring

Df Deviance AIC LRT Pr(Chi)
<none> 1.6184 34.537
smoking 1 1.6781 32.597 0.0597 0.80694
obesity 1  7.2750 38.194 5.6566 0.01739 *
snoring 1  7.2963 38.215 5.6779 0.01718 *

Signif. codes: 0O “*%x’ 0.001 ‘**’ 0.01 ‘x> 0.05 ¢.” 0.1 ¢ * 1

For factors with only two levels, the same hypothesis is being tested here as in the output
from summary( ); the difference between the P values are a result of the somewhat different
approximations used. For factors with more than two levels, we always need to used drop1( ).

3 Other link functions for binomial data

The logit link function used above has the advantage that the parameters of the models can
be easily interpreted in terms of oddsratios. However, depending on the context, other link
functions (see Fig. [1) may be prefereable.



3.1 Probit link

Consider the logistic regression on p. 240 where the probability that girls between the age of
8 and 20 years has had their first menstruation is modelled as a function of age x using the
logistic regression model

logit p = By + Biz. (8)

This model can be used to estimate the mean age at first menstuation xg = —fy/31. Clearly,
the age at which the first menstruation occurs must have some distribution in the population
and and from the slope of the relationship between p and z it should be possible to estimate
the standard deviation of this distribution.

Suppose that the time T at which the first menstruation occurs has a normal distribution
with mean p and standard deviation o. Then, at a given age x, the probability p that the first
menstruation has already occured is

p=P(T <z) (9)

Now, since T' ~ N (u,0?) it follows that (T — u)/o has a standard normal distribution and we

can rewrite @ as
T _ _
p:P( L “>=¢C’”) (10)
o o o

where ¢ is the cumulative standard normal density (denoted G in Lgvas). This equation,
specifying an alternative relationship between p and age = to , can alternatively be written
as

¢ (p) = L (11)

o
or, after reparameterization, as
probitp = By + Six (12)

where the probit link function is the inverse of the cumulative standard normal density ¢ and
the new parameters, the regression coefficients

Bo=—=, pr=—. (13)

This model can be fitted in R by specifying the alternative probit link function as follows.

> menmod <- glm(menarche ~ age,binomial(link="probit"))

> summary (menmod)

Call:
glm(formula = menarche ~ age, family = binomial(link = "probit"))

Deviance Residuals:
Min 1Q Median 3Q Max
-2.32986 -0.15223 0.00028 0.07228 2.48281

Coefficients:

Estimate Std. Error z value Pr(>lz|)
(Intercept) -11.37033 1.06346 -10.69 <2e-16 **x*
age 0.86233 0.08106 10.64  <2e-16 **x

Signif. codes: O “*%x’ 0.001 ‘**’ 0.01 ‘x> 0.05 ¢.” 0.1 ¢ ’ 1

(Dispersion parameter for binomial family taken to be 1)



Null deviance: 719.39 on 518 degrees of freedom
Residual deviance: 197.39 on 517 degrees of freedom
AIC: 201.39

Number of Fisher Scoring iterations: 8

Interestingly, the new choice of link function gives a better fitted indicated by the slightly smaller
residual deviance. Having estimates 5y and (31, estimates of y and ¢ are found by solving
with respect to p and o which yields the estimators

N 0 R 1
W= ——=, O = —«—.
B B
Thus, the estimated standard deviation of the age at first menstruation is 6 = 1/0.8623 = 1.15
years. Standard errors of i and & can be computed using the method in handout 3, see
assignment 7.

(14)

3.2 Complementary log-log link

Suppose that we observe if given individuals have died during given time intervals of different
lengths ¢t and we want to model how the probability of dying depends on explanatory variables
r1,%2,...,x, of interest as well as the length ¢ of the time intervals. If the rate of mortality A
of a given individual is constant with respect to time, then the life span of a given indidivual T'
will follow an exponential distribution with parameter A and the probability that an individual
has died is

p=P(T<t)=1-—e, (15)

Our interest is in how the explanatory variables affects the rate of mortality A. The rate of
mortality of a given individual is necessarily non-negative, that is,

0< A< +oo0. (16)

This suggest that it is reasonable to assume that the In A depends linearly on the linear predictor
1 involving the different explanatory variables, that is,

In\ = By + frer + -+ + By, - (17)

n

This assumption implies that the different covariates have a multiplicative effect on the rate of

mortality A since
A\ = ePotBizit+pray (18)

For example, the rate of mortality may may be 20% higher for one of the sexes.
Subtitution of into the relationship between p and the linear predictor n becomes

p=1—¢ 0T (19)
which can be rewritten as
cloglogp = Bo + Brz1 + -+ + Brxi + Int (20)
where
cloglogp = In(—In(1 — p)), (21)

is the so called complementary log log link function (see Fig. .



In contrast to the probit and logit link functions, because the cloglog link function is not
symmetric, the model is changed and not only reparameterized if we choose to model the
probability of survival rather than death.

The final term on the right hand side of , the log of the length of the time intervals, is a so
called offset variable in the model which accounts for how the probability p necessarily increases
in a certain way with the length ¢ of the time interval. For instance, for small p, cloglogp ~ Inp
which implies that probability of death p as it should becomes directly proportional to the
length of the the time interval t. Offset terms can be thought of as explanatory variables for
which the regression coefficient is known to be exactly one a priori. To include an offset term
in a model use the additional offset argument in the call to the glm function when fitting the
model in R.

Suppose that we mark 10 female and 10 male newborn roedeer fawns with radio collars and
that we relocate each individual after either ¢ = 7 og ¢ = 14 days by means of radio tracking.
At this point we determine if each individual has been lost to fox predation (indicated by a
response y = 1) or if each individual is still alive (indicated by the response y = 0). This data
can then by represented by the following data frame

> fawndata

y sex t
1 1 male 7
2 0 male 7
3 0 male 7
4 0 male 7
5 1 male 7
6 1 male 14
7 1 male 14
8 1 male 14
9 1 male 14
10 1 male 14
11 1 female 7
12 0 female 7
13 0 female 7
14 0 female 7
15 0 female 7
16 0 female 14
17 0 female 14
18 1 female 14
19 0 female 14
20 1 female 14

A model based on the cloglog link using sex as an explantory categorical variable (a factor) and
using Int as an offset can now be fitted as follows.

> fawnmod <- glm(y~sex,family=binomial (link="cloglog") ,offset=log(t))
> summary (fawnmod)

Call:
glm(formula = y ~ sex, family = binomial(link = "cloglog"), offset = log(t))

Deviance Residuals:
Min 1Q Median 3Q Max
-1.38076 -0.98701 -0.06535 0.67213 1.75029



Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.9938 0.4075 -4.893 9.94e-07 **x
sexfemale -1.3646 0.7094 -1.924 0.0544 .
Signif. codes: O “*%x’ 0.001 ‘**’ 0.01 ‘x> 0.05 ¢.” 0.1 ¢ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 25.017 on 19 degrees of freedom
Residual deviance: 21.022 on 18 degrees of freedom
AIC: 25.022

Number of Fisher Scoring iterations: 5

With a linear predictor involving one factor and one offset variable, the model can now be
written in mathematical notation as

cloglogp = p+ a; +1Int (22)

where p is the “intercept” of the model and «; is the effect of the ¢’th level of factor ¢. The
corresponding relationship between the mortality rate A and the linear predictor is

A= ehtoi, (23)

Since we are comparing only two groups only two parameters can be estimated. By default, aq
is set equal to zero. The estimate of the mortality rate for the first sex (males) is thus only

et =199 = 0.136 (24)
(per day) whereas for the second sex (females), the rate of mortality is
efito2 = 1997136 — 00351, (25)

that is, a reduced mortality rate by a factor of e=136 = 0.257 relative to the first sex (males).

Thus, if we somewhat naively assume the rate of mortality remains constant also beyond
the length of the time interval of 14 days, the expected lifespans become 7.31 and 28.5 days
for males and females, respectively. For a real world example of this form of data see |Aanes &
Andersen (1996).

4 Infinite parameter estimates as a result of linear separation

The following example illustrates a quite common phenomena when the response is binomial
and we have only a moderate amount of data and many possible explanatory variables.
Suppose we have the following simple data set.

x <- seq(.1,1,length=10)
y <- ¢(0,0,0,0,1,0,1,1,1,1)
plot(x,y)

If we fit a logistic regression to these data, we get the following warning messages.

> mod <- glm(y~x,fam=binomial)

Warning messages:

1: glm.fit: algorithm did not converge

2: glm.fit: fitted probabilities numerically O or 1 occurred
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Figure 2: Linear separation in a model with one numerical explanatory variable.

The summary of the model gives us the following parameter estimates.

> summary (mod)

Coefficients:

Estimate Std. Error z value Pr(>lz|)
(Intercept) -200.37 265802.23 -0.001 1
X 44 .52 58511.58 0.001 1

Null deviance: 1.3460e+01 on 9 degrees of freedom
Residual deviance: 8.6042e-10 on 8 degrees of freedom
AIC: 4

The estimate of the regression coefficient for for the effect of the explanatory x and in particular
its standard error and associated tests looks suspect. Fig. [2] shows the predicted values based
on the fitted model together with the observed data.

xx <- seq(0,1,1en=100)
pp <- predict(mod,newdata=data.frame(x=xx),type="response")
lines(xx,pp)

This shows that the estimated model fits the data very well, in fact, almost perfectly as indicated
by a residual deviance which is almost exactly zero.

This phenomena arise because the response y is always 1 for all values of x above a certain
threshold and otherwise always zero. This implies that the likelihood (the probability of the
observed y’s) is maximised when slope and intercept of the model goes to infinity and minus
infinity in such a way that the resulting predicted values coinsides with the observations.

The summary, however, suggests that the effect of the x on y is non-significant. This test,
however, is based on the estimated standard error of the slope which is computed from the
curvature of the log-likelihood surface at the maximum likelihood. Since the the log-likelihood
in this cases essentially takes the form of a flat ridge extending into infinity (Fig. , the standard
error is greatly inflated and the test breaks down. If we instead tests Hy : logitp = By against
H;y :logitp = By + f1x using dropl we get a highly significant test result

> dropl(mod,test="Chisq")
Single term deletions

Model:



Figure 3: A plot of the likelihood function for the logistic regression model for data with linear
separation

y X
Df Deviance AIC LRT Pr(Chi)
<none> 0.000 4.000
X 1 13.460 15.460 13.460 0.0002437 **x*
Signif. codes: O ‘*%x’ 0.001 ‘**’ 0.01 ‘x> 0.05 ‘.’ 0.1 ¢ ’ 1

This test rests on the fact that that the change in deviance is approximately chi-square dis-
tributed under the null hypothesis. The observed data, strongly supporting H;, does not
invalidate this approximation for the distribution of the change in deviance under Hy.

The above phenomena can arise in more complex models with many explanatory variables.
Consider the following data set.

> x1 <- rep(1:10,2)

> x2 <- rep(c(0,1),c(10,10))
>y <- ¢(1,1,1,0,0,0,0,0,0,0,
+ 1,1,1,1,1,1,0,0,0,0)
> data.frame(x1,x2,y)

~N O O WN
~No o WwN

O O OO O O O
O O OO r RrrY
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8 8 00
9 9 00
10 10 0 ©
11 1 11
12 2 11
13 3 11
14 4 11
15 5 11
16 6 11
17 7 10
18 8 10
19 9 10
2010 10

Here 9 can represent an dummy variable encoding of a factor with two levels. If we first fit
the model using either x; or x5 as the only explanatory variable nothing exceptional happens.
However, if including the both z; and xo in the same model, we again get the same warning
messages as in the simple example above aswell as suspiciously large parameter estimates and
associated standard errors.

> mod2 <- glm(y ~ x1 + x2, family=binomial())

Warning messages:

1: glm.fit: algorithm did not converge

2: glm.fit: fitted probabilities numerically O or 1 occurred
> summary (mod?2)

Call:
glm(formula = y ~ x1 + x2, family = binomial())

Coefficients:

Estimate Std. Error z value Pr(>lz|)
(Intercept) 155.07 140546.83 0.001 1
x1 -44.29  39066.66 -0.001 1
x2 132.79 122010.82 0.001 1

Null deviance: 2.7526e+01 on 19 degrees of freedom
Residual deviance: 1.9320e-09 on 17 degrees of freedom
AIC: 6

The fitted model is shown in Fig. Again, the estimated model fits almost perfectly to the
observed data, in this case because there exist a linear combination of the explanatory variables

L =ciz1 + coxs (26)

such that y = 1 for all values of L > Ly and y = 0 for all values of L < L. Again, the likelihood
is maximised when both slopes in the regression goes to infinity.
Consider a final example obtained by changing the reponse as follows

y <- ¢(1,1,0,1,0,1,0,0,0,0,
1,1,1,1,1,1,1,1,1,1)
> data.frame(x1,x2,y)

xl x2 y
1 1 01
2 2 01
3 3 00

11
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Figure 4: Linear separation in a model with two explanatory variables.

4 4 01
5 5 00
6 6 01
7T 7 00
8 8 00
9 9 00
10 10 0 O
11 1 11
12 2 11
13 3 11
14 4 11
15 5 11
16 6 11
17 7 11
18 8 11
19 9 11
2010 11

Now we always observe a response y = 1 for the second level of the factor (when the dummy
variable xo = 1). Fitting a logistic regression to these data we get

> mod2 <- glm(y ~ x1 + x2, family=binomial())
> summary (mod?2)

Call:
glm(formula = y ~ x1 + x2, family = binomial())

Coefficients:

Estimate Std. Error z value Pr(>lzl)
(Intercept) 2.9265 2.0601 1.421 0.1554

12



0,000

Figure 5: An example for which the response y is always 1 for one level (indicated by the dummy
variable x9) of a factor included as an explanatory variable in the model.

x1 -0.6622 0.4001 -1.655 0.0979 .
x2 22.3725 4800.9802 0.005 0.9963

Null deviance: 24.4346 on 19 degrees of freedom
Residual deviance: 8.6202 on 17 degrees of freedom
AIC: 14.620

Fig. [p] shows a plot of the observed and predicted values as function of z1 and x9. In this case
we can trust the estimate of the regression coefficient 81 for the effect of x1 but not that of zo
since the maximum likelihood estimate of 8y becomes infinite.

To conclude, in cases where linear separation occurs, tests between different nested alter-
natives may still be valid, but estimates of some of the parameters can no longer be trusted
and more data needs to be collected. An alternative approach is to assume that the effects
associated with different levels of a factor comes from some a common distribibution. This
leads to so called generalized linear mixed models (Pinheiro and Bates, 2009)

5 Poisson response

See Dalgaard, ch. 15.

6 Overdispersion

6.1 Processes generating over- and underdispersion

The assumption that the response is binomial with parameters n and p implies the variance of
the response variable is VarY = np(1 — p). Having specified how model for how p depends on
the explanatory variables of interest, for example,

logit p = By + frw1 + -+ - + By, (27)

13
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the variance of response variable is also given. The expression for the variance of a binomially
distributed variable follows from the assumption that the individual trials in the Bernoulli trials
are independent. If Y ~ bin(n,p), we can write Y as sum

Y=L+L+ +1, (28)

where the I]’s are variables indicating success or failure in each Bernoulli trial. It then follows
that

n
VarY =Y VarT;+2)  Cov(I;, Ij). (29)
i=1 i<j
If the trials in the Bernoulli sequence are independent, all covariances are zero and simplifies

to
VarY = nVar I; = np(1 — p). (30)

If the Bernoulli trials are not independent, however, the variance of Y may either increase or
decrease. For example, if we consider the survival of n nestlings, competition between different
individuals for limited resources provided by the parents may create a negative dependency
between their individual survival. This would make the above covariances negative and deflate
the variance of the total number of nestlings Y leaving the nest. Similarly, positive covariances
between the I;’s, as a result of cooperation, say improved vigilance, might inflate the variance
in the number of offspring surviving a given time interval after leaving the nest. In humans,
there is a weak positive correlation between the sex of children in the same family creating a
slight degree of over-dispersion in family sex-ratio (Lindsey and Altham, 2002).

Similar complications may arise also for Poisson processes. Just like individual trials in a
Bernoulli sequence are assumed to be independent, a Poisson process has the property that
the number of occurances during disjoint subintervals are assumed to be indepenent. The total
number of occurances Y during a time interval of length ¢ is then Poisson distributed with
expectation FY = At where X is the rate of the process. The assumption of independence
between disjoint subintervals implies that the variance VarY has to be equal to the expected
value At.

Suppose that we count the number of individuals of minke whale seen from a ship moving
a along a given transect at constant speed. As a result of flocking behaviour, the number of
individuals seen during disjoint adjacent subintervals will not be independent, since we are more
likely to observe another individual shortly after a given observation. This leads to an increase
in the variance of the total number seen during a time interval of length ¢ beyond the Poisson
variance At.

Similarly, negative dependencies may arise reducing the variance if each occurance involves
a certain handling time. For instance, in many species, giving birth involves pregnancy and
parantal care during which a new child cannot be conceived. This will deflate the variance in
the total number of offspring conceived during a time interval of length ¢ below the Poisson
variance. Modern contraception will of course further complicate this process.

Finally, overdispersion may arise as a result of heterogeneity between different individuals
not accounted for by the fitted model. Suppose that we study the number of offspring produced
by different parents. Each parent produces a maximum number of n offspring and each offspring
survive with probability p. Conditional on p, the variance in number of surviving offspring ¥
of a given parent is then

Var(Y|p) = np(1 - p), (31)

and the conditional expectation is
E(Y|p) =np (32)

14
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Figure 6: Proportion of female moose having ovulated at different times (number of days since
January 1.

Suppose that that the mean value of p among the different parents, Ep, is pp and that the
variance among parents Varp = ¢po(l —po) and . From the law of total variance it follows that

VarY = E Var(Y|p) + Var E(Y |p)
= Enp(1 —p) + Varnp (33)
= np()(l —po)[l + (n - 1)¢]7

that is, the variance is inflated by a factor ¢ = 1 + (n — 1)¢ relative to what we might expect
from the simple binomial model. From this equation it can be also seen that a single Bernoulli
variable cannot be over-dispersed (the case of n = 1).

6.2 Detecting overdispersion

A large deviance may be an indication of overdispersion. Testing if overdispersion is present is
based on the fact that the deviance of the model has a chi-square distribution with n—p degrees
of freedom under the null hypothesis that there is no overdispersion. This null hypothesis may
then be rejected if the observed deviance of the model is greater than the upper a-quantile of
the chi-square distribution (the critical value of the test).

This test of overdispersion thus follows the same procedure as the test for the goodness-of-
fit of the model. A positive test result may thus be an indication of overdispersion but it may
also indicate that the functional relationship between the response and the explanatory variable
assumed in the model is wrong.

This is illustrated by problem 3 in assignment 7 concerning how the proportion of individual
female moose having ovulated increase over time during the rut (Fig. @ The summary of the
model,

> summary (mod)

Call:
glm(formula
weights

prop ~ time, family = binomial(link = "probit"),
n)

15



Deviance Residuals:
Min 1Q Median 3Q Max
-3.8703 -1.0580 0.0004 0.5604 3.2028

Coefficients:

Estimate Std. Error z value Pr(>lz]|)
(Intercept) -18.057365 1.642587 -10.99 <2e-16 ***
time 0.065188 0.005852 11.14  <2e-16 *xxx

Signif. codes: O ‘“x*x*x’ 0.001 ‘**’ 0.01 ‘x> 0.056 ‘.’ 0.1 ¢ ’ 1
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 254.607 on 48 degrees of freedom
Residual deviance: 90.165 on 47 degrees of freedom
AIC: 189.29

shows that the observed deviance is much greater than it’s expected value under Hy equal to
47, aswell as the critical value of the test

> qchisq(.95,df=47)
[1] 64.00111

and we can thus reject Hy. However, the bad fit of the model is not due to overdispersion
arising from dependencies between different individual but is due the fact that the functional
relationship between time and the probability p is wrong as can be seen by the systematic
pattern in the residuals. As we shall see later, an alternative model which fits the data almost
perfectly, can be formulated (assignment 11).

6.3 Accounting for overdispersion

Suppose that the variance of the repsonse variable of a generalized linear model is greater the
binomial or Poisson variance. If we ignore this and use a model based on the assumption that
the variance is exactly binomial or Poisson, we will underestimate the standard errors of the
parameter estimates. Ignoring overdispersion will also lead to a higher probability of type 1
error - incorrectly rejecting true null hypotheses.

The simplest way of accounting for overdispersion it is assume that the variance of the
response variable is inflated by an unknown scale parameter ¢ such that the variance is

VarY = pnp(1 —p) (34)
for models with a binomial response variables and
VarY = pu (35)

for Poisson response. One estimator of the scale parameter 1 is then the observed deviance
divided by the residual degrees of freedom of the model,

D
n—p

¢ = (36)

Note the similarity with estimator s> = SSD,.s/(n — k) of ¢ in linear models with normal
response. In practice, a slightly different estimator based on the weighted sum of squared of
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squared Pearson residuals,

1 /n—p ’
R Yi/T — Pi
= Z ——_——| (37)
for a binomial response, is used instead (see Venables and Ripley, 2009 for details).

Having introduced the unknown scale parameter ¢ in the model, the change in deviance but
now scaled by the parameter ¢,

Dy — Dy
2

is again approximately chi-square distribututed with p; — py degrees of freedom. In pratice,
since ¢ must be estimated, the test statistic

(Do — Dlzﬁ/(pl — Po) (39)

(38)

which is approximately F-distributed with p; — pg and n — p; degrees of freedom. Again, note
the similarity to the corresponding test for linear models.

To fit a model with the additional scale parameter ¢ use family=quasibinomial( ) or
family=quasipoisson( ) when fitting the model with the glm( ) function. F-tests between
different model alternatives are obtained using drop1( ) or add1( ) with the argument test="F".

7 Ordinal response (optional material)

7.1 Probit regression revisited
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